Product Code Database
Example Keywords: mmorpg -arcade $28-117
barcode-scavenger
   » » Wiki: Gilbert Vernam
Tag Wiki 'Gilbert Vernam'.
Tag

Gilbert Vernam
 (

Rank: 100%
Bluestar Bluestar Bluestar Bluestar Blackstar

Gilbert Sandford Vernam (April 3, 1890 – February 7, 1960) was a Worcester Polytechnic Institute 1914 graduate and AT&T engineer who, in 1917, invented an additive polyalphabetic and later co-invented an automated . Vernam proposed a teleprinter cipher in which a previously prepared key, kept on , is combined character by character with the message to produce the . To decipher the ciphertext, the same key would be again combined character by character, producing the . Vernam later worked for the Postal Telegraph Company, and became an employee of when that company acquired Postal in 1943. His later work was largely with automatic switching systems for networks.


Vernam's patent
The combining function Vernam specified in , issued July 22, 1919, is the operation, applied to the individual impulses or used to encode the characters in the . Vernam did not use the term "XOR" in the patent, but he implemented that operation in logic. In the example Vernam gave, the is A, encoded as "" in Baudot, and the key character is B, encoded as "". The resulting ciphertext will be "", which encodes a G. Combining the G with the key character B at the receiving end produces "", which is the original plaintext A. The has called this patent "perhaps one of the most important in the history of cryptography.". “Vernam had invented the unbreakable cipher: “” (OTT) for on-line encryption. In 1919 he was granted a patent, perhaps one of the most important in the history of cryptography.”


One-time pad
Shortly thereafter, , at that time a captain in the US Army Signal Corps, proposed, in addition, that the paper tape key contain information. The two ideas, when themselves combined, implement an automatic form of the , though neither inventor used the name then.

Claude Shannon, also at Bell Labs, proved that the one-time pad, properly implemented, is unbreakable in his World War II research that was later published in October 1949. He also proved that any unbreakable system must have essentially the same characteristics as the one-time pad: the key must be truly random, as large as the plaintext, never reused in whole or part, and kept secret.


The Vernam cipher
In modern terminology, a Vernam cipher is a symmetrical in which the plaintext is combined with a random or stream of data (the "keystream") to generate the ciphertext, using the Boolean function. This is symbolised by ⊕ and is represented by the following "", where + represents "true" and − represents "false".

OUTPUT
A B
+
+
Other names for this function are: Not equal (NEQ), modulo 2 addition (without 'carry') and modulo 2 subtraction (without 'borrow').

The cipher is reciprocal in that the identical keystream is used both to encipher plaintext to ciphertext and to decipher ciphertext to yield the original plaintext:

:::Plaintext ⊕ Key = Ciphertext

and:

:::Ciphertext ⊕ Key = Plaintext

If the keystream is truly random and used only once, this is effectively a . Substituting pseudorandom data generated by a cryptographically secure pseudo-random number generator is a common and effective construction for a stream cipher. RC4 is an example of a Vernam cipher that is widely used on the Internet.

If, however, the same keystream is used for two messages, known to cryptanalysts as a depth, the effect of the keystream can be eliminated, leaving the two plaintexts XORed together. The result is equivalent to a Running key cipher and the two plaintexts may be separated by linguistic cryptanalytical techniques.

:::Ciphertext1 ⊕ Ciphertext2 = Plaintext1 ⊕ Plaintext2

An operator's mistake of this sort famously allowed the Cryptanalysis of the Lorenz cipher by the British at during World War II. They diagnosed how the keystream was generated, worked out how to break the cipher, and read vast quantities of high-level messages to and from German high command without ever seeing an actual Lorenz machine.


Notes

See also

  • . Transcript of a lecture given by Prof. Tutte at the University of Waterloo
  • Also in

Page 1 of 1
1
Page 1 of 1
1

Account

Social:
Pages:  ..   .. 
Items:  .. 

Navigation

General: Atom Feed Atom Feed  .. 
Help:  ..   .. 
Category:  ..   .. 
Media:  ..   .. 
Posts:  ..   ..   .. 

Statistics

Page:  .. 
Summary:  .. 
1 Tags
10/10 Page Rank
5 Page Refs